Leor Weinberger, PhD

Headshot of Leor Weinberger
User Profile Photo

Leor Weinberger, PhD

User Profile Name
Director, Gladstone Center for Cell Circuitry
Professor, School of Medicine
User Profile Title
User Profile Email

Biography

Weinberger and colleagues discovered the HIV latency circuit (Weinberger* et al. Cell 2005), which provided the first experimental evidence that stochastic fluctuations (‘noise’) in gene expression drive biological fate decisions. Noise-driven decisions were then found in systems ranging from bacteria to cancer. The lab's studies overturned dogma in the field by showing that HIV latency was a ‘hardwired’ virus program (Razooky et al. Cell 2015; Rouzine et al. Cell 2015) and discovered stochastic latency programs in other viruses (Chaturvedi et al. PNAS 2020). For these contributions, Weinberger received the NIH Avant-Garde award for HIV research and an NIH Merit Award. The lab discovered noise-enhancer molecules (Dar et al. Science 2014), now used by numerous other labs—e.g., to modulate circadian rhythms (Li et al. PNAS 2020)—and discovered a cellular noise-control pathway that potentiates embryonic cell-fate transitions (Desai et al. Science 2021). These studies demonstrated that transcriptional noise can be a ‘feature not a bug’ of cellular systems and play a functional, physiological role. On the therapeutic front, the lab conceptualized and forwarded Therapeutic Interfering Particles (TIPs) (Weinberger et al. J Virol. 2003)—a first-in-class antiviral countermeasure that is single-dose and escape-resistant (see TED talk, below). The lab's initial work led to the DARPA INTERCEPT program (a $40M initiative that funded dozens of virology labs worldwide from 2015–20). In 2020, the lab discovered TIPs for SARS-CoV-2 (Chaturvedi et al. Cell 2021)—the first TIP reported for any virus—and provided long-sought evidence for the therapeutic effect of the TIP mechanism of action. Following FDA reviews, the DoD and NIH funded TIP clinical trials for HIV and SARS-CoV-2.
CTSI Profile Bio

Displaying 51 - 65 of 65

  1. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM, Cox CD, Simpson ML, Weinberger LS. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc Natl Acad Sci U S A. 2012 Oct 23; 109(43):17454-9.
  2. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, Martins L, Aull K, Li PC, Planelles V, Bradner JE, Zhou MM, Siliciano RF, Weinberger L, Verdin E, Ott M. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. . 2013 Feb 01; 12(3):452-62.
  3. Singh A, Razooky BS, Dar RD, Weinberger LS. Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol Syst Biol. 2012; 8:607.
  4. Metzger VT, Lloyd-Smith JO, Weinberger LS. Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput Biol. 2011 Mar; 7(3):e1002015.
  5. Franz K, Singh A, Weinberger LS. Lentiviral vectors to study stochastic noise in gene expression. Methods Enzymol. 2011; 497:603-22.
  6. Melissa L. Wong, Cynthia Bolovan-Fritts, Leor S. Weinberger. Negative Feedback Speeds Transcriptional Response-Time In Human Cytomegalovirus. Biophysical Journal. 2009 Feb 1; 96(3):305a.
  7. Razooky BS, Weinberger LS. Mapping the architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and exploits stochastic noise. Methods. 2011 Jan; 53(1):68-77.
  8. Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys J. 2010 Apr 21; 98(8):L32-4.
  9. Weinberger AD, Perelson AS, Ribeiro RM, Weinberger LS. Accelerated immunodeficiency by anti-CCR5 treatment in HIV infection. PLoS Comput Biol. 2009 Aug; 5(8):e1000467.
  10. Singh A, Weinberger LS. Stochastic gene expression as a molecular switch for viral latency. Curr Opin Microbiol. 2009 Aug; 12(4):460-6.
  11. Melissa L. Wong, Cynthia Bolovan-Fritts, Leor S. Weinberger. Negative Feedback Speeds Transcriptional Response-Time In Human Cytomegalovirus. Biophysical Journal. 2009 Feb 1; 96(3):305a.
  12. Weinberger LS, Dar RD, Simpson ML. Transient-mediated fate determination in a transcriptional circuit of HIV. Nat Genet. 2008 Apr; 40(4):466-70.
  13. Weinberger LS, Shenk T. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biol. 2007 Jan; 5(1):e9.
  14. Yasushi Shiratori, As Perelson, L. Weinberger, F. Imazeki, O. Yokosuka, R. Nakata, M. Omata. Rapid turnover rate of hepatitis C virus clearance by the twice-a-day treatment regimen using interferon-beta. Gastroenterology. 2000 Apr 1; 118(4):a1488.
  15. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005 Jul 29; 122(2):169-82.