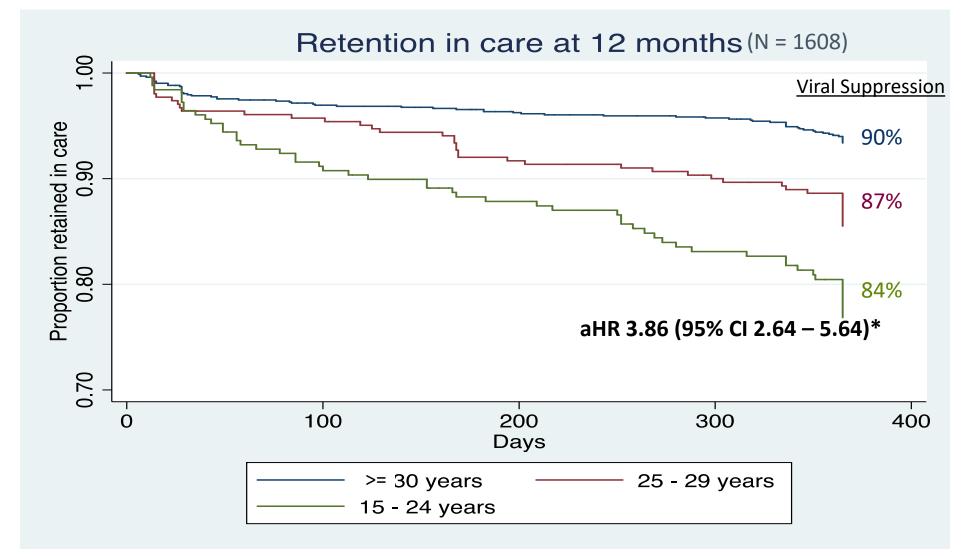

Leveraging Social Networks to Improve Clinical Outcomes Among HIV-infected Youth in East Africa

Assistant Professor, Division of HIV, Infectious Diseases, and Global Medicine

Lillian Brown, MD, PhD

September 28, 2018

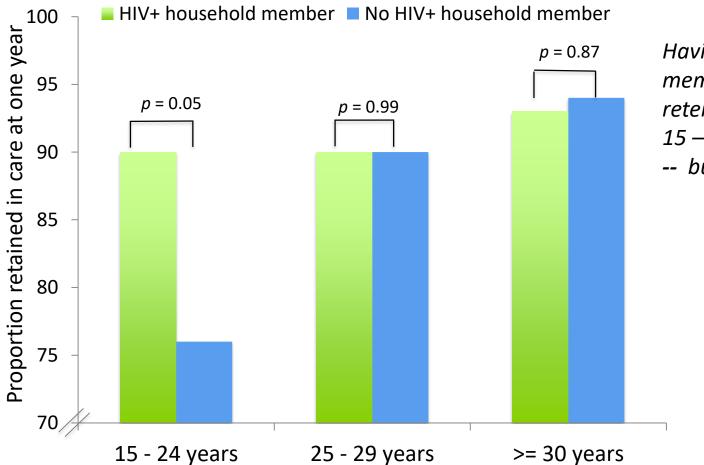

37 million people globally are living with HIV 4 million are **youth age 15 – 24**

Across sub-Saharan Africa youth on ART have poor clinical outcomes

- Compared to older adults, youth age 15 24:
 - are 1.5 3x more likely to become lost to follow-up^{1, 2, 3}
 - 50% *less likely* to report perfect adherence²
 - are 1.6-3.2x more likely to have detectable viral loads^{2,3,4,5}
- Implications for their own health, future ART treatment options, and ongoing transmission

Youth continue to lag behind older age groups in universal treatment era

*Adjusted for sex, education, occupation, pre-ART CD4 count, time to link to HIV care, access to mobile phone


Brown et al, AIDS 2016

Youth face unique challenges to success in HIV care

- Time of transition¹
 - Psychosocial, cognitive, behavioral changes
 - Life events: leaving home, marriage, children
- Stigma^{2,3}
- Poor social support^{3,4}
- Lack of youth friendly clinics in rural areas⁵

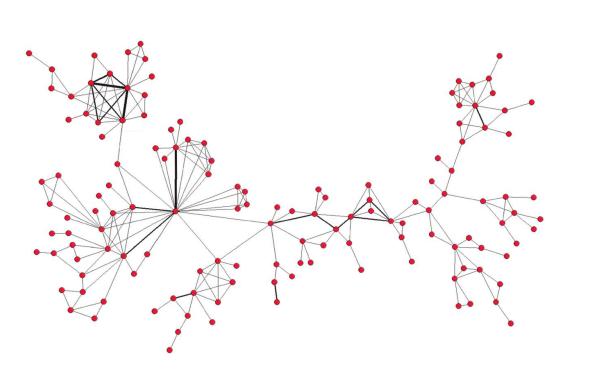
¹Andiman, J Pediatr 2011; ²Cluver AIDS 2014; ³Wolf BMC Public Health 2014; ⁴Cluver AIDS Care 2016; ⁵Geary et al, BMC Health Services Research 2014

HIV-infected youth in Kenya who lived with HIV+ household member more likely to be retained in care

Having HIV-infected household member associated with increased retention at one year among youth age 15 – 24 **(aHR 2.94; 95% CI 1.35 – 6.25)**

-- but not older age groups

How do the social networks of HIV-infected youth influence their clinical outcomes?

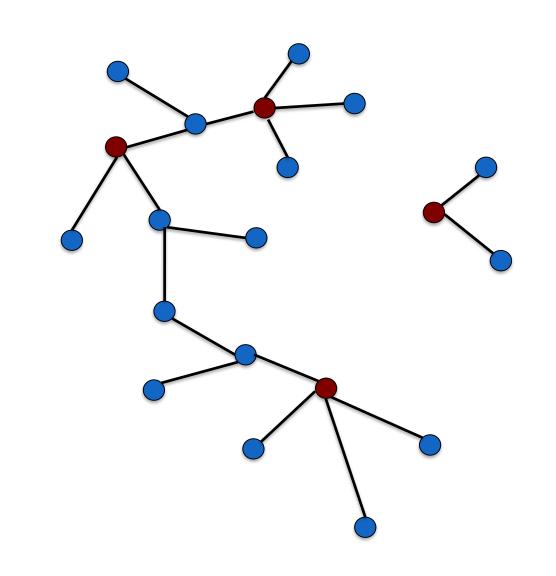

Can the social networks of HIV-infected youth be leveraged to improve their clinical outcomes?

Social networks of youth may provide insight into engagement in HIV care

- Social networks influence various aspects of disease and behavior¹
 - Spread of ideas
 - Social support
 - Access to resources
- Example: Social network research and obesity²
- Social networks are associated with HIV risk behavior
 - HIV testing^{3,4,5}
 - Concurrency⁶
 - Intimate partner violence⁷

¹Christakis & Fowler, Epidemiol, 2009;² Christakis & Fowler *NEJM* 2007; ³Zheng *CROI* 2016; ⁴Zheng *CROI* 2017; ⁵Maman *Soc Sci Med* 2016; ⁶Yamanis *AIDS Behav* 2016; ⁷Yamanis *AIDS Behav* 2015

Social Network Analysis


Basic definitions:

- Node: each individual (ego) in network
- Edge: Direct connection between individuals
- Local social network: first degree contacts

Analysis:

- Network characteristics
 - Density: Proportion of realized edges between nodes to potential edges between all nodes
 - Clustering: proportion of trios that are fully connected
- Ego characteristics
 - Centrality:
 - Degree
 - Indegree
 - Betweeness
 - Closeness

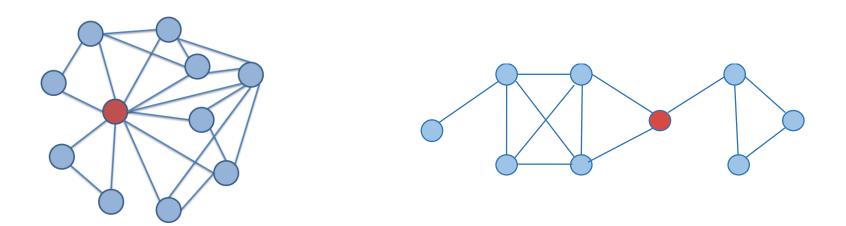
Social Network Analysis

Basic definitions:

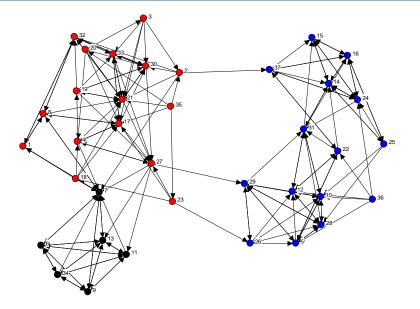
- Node: each individual (ego) in network
- Edge: Direct connection between individuals
- Local social network: first degree contacts

Analysis:

- Network characteristics
 - Density: Proportion of realized edges between nodes to potential edges between all nodes
 - Clustering: proportion of trios that are fully connected
- Ego characteristics
 - Centrality:
 - Degree
 - Indegree
 - Betweenness
 - Closeness

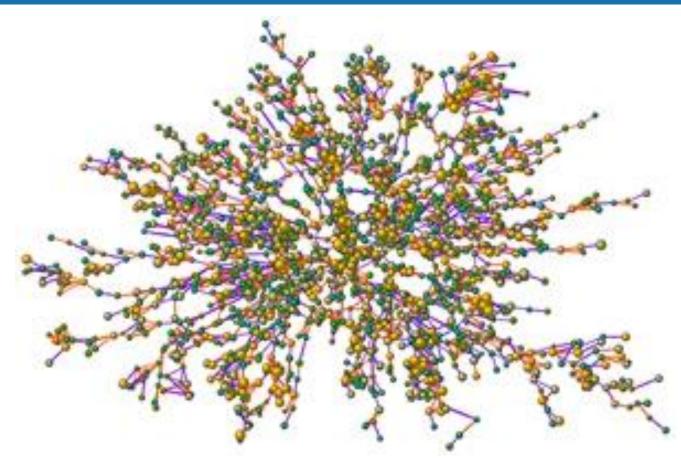

• Focus on influential individuals

• Target network based groups


• Rewire the network: create new ties

Valente, Science 2012; Flodgren et al Cochrane Reviews 2011

- Focus on influential individuals
 - Opinion leaders
 - In-degree for highly cohesive groups
 - Betweenness for fractured groups



Valente, Science 2012; Kelly JA AJPH 1994; Jones KT AJPH 2008

• Target network based groups

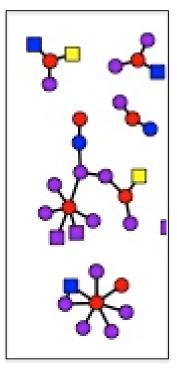
Valente, Science 2012

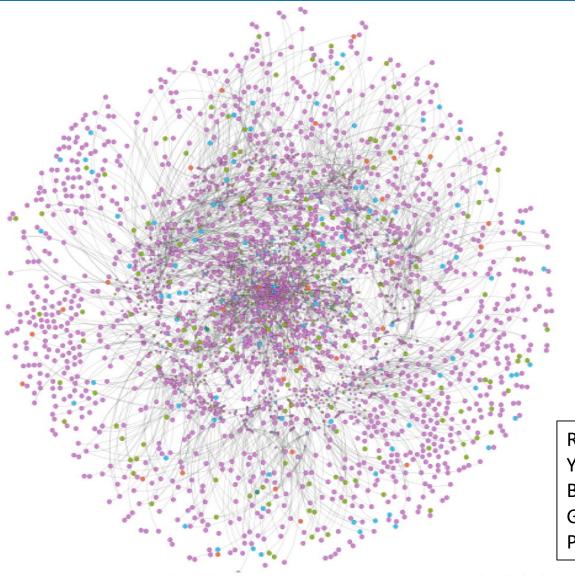
• Rewire the network: create new ties

How do the social networks of HIV-infected youth influence their clinical outcomes?

Can the social networks of HIV-infected youth be leveraged to improve their clinical outcomes?

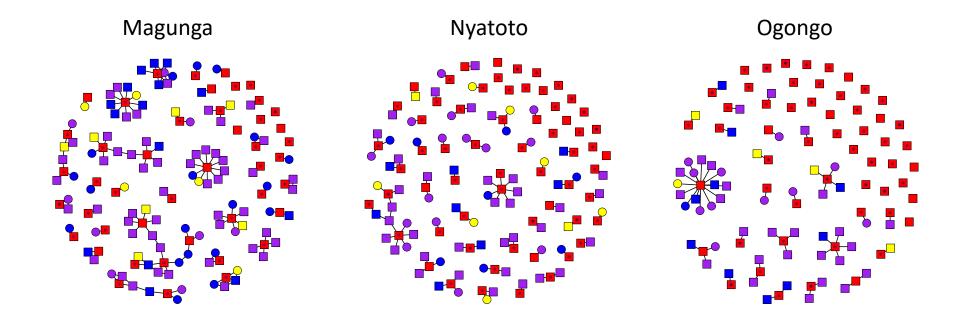
The SEARCH test-and-treat trial as a platform to address these questions


- Community cluster-randomized trial
- ~320,000 persons across 32 communities
- Complete social networks



Social Networks

- Social contacts named in 5 domains:
 - Health: "With whom have you discussed any kind of health issue?"
 - Emotional support: To whom have you gone to receive emotional support?
 - Free time: With whom have you usually spent time for leisure, enjoyment, relaxation?
 - Money: With whom have you discussed any kind of money matters?
 - Food: With whom, outside of your household, have you shared, borrowed, or exchanged any food?
- Named contacts matched to residents identified in census



Complete network of all residents ≥ 15 years across 3 communities in Kenya

Red = HIV+ young women (15 – 24 years) Yellow = HIV+ young men (15 – 24 years) Blue = HIV+ older adult men (\geq 25 years) Green = HIV+ older adult women (\geq 25 years) Purple = HIV negative

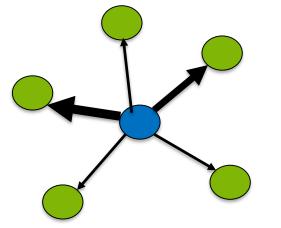
Local Social Networks of HIV-infected Young Women in 3 communities in Kenya

HIV-infected woman 15 – 24 who linked to care * Retained in care

- HIV-infected female contacts
- HIV-uninfected female contacts
- E Female contacts with unknown HIV-status
- HIV-infected male contacts
- HIV-uninfected male contacts
- Male contacts with unknown HIV-status

Young women with HIV+ contacts in local social network more likely to be retained in care & virally suppressed

Adjusted Hazard Ratio (95% CI) for Retention in Care ^{*,+}			
	Any Gender	Female	Male
Any HIV+ contact	1.45 (0.90 – 4.17)	2.63 (1.08 – 14.3)	0.60 (0.24 – 1.49)
Health contact	1.62 (0.63 – 4.17)	1.02 (0.12 – 9.10)	0.44 (0.17 – 1.14)
Emotional support contact	1.49 (0.54 – 4.07)	1.69 (0.20 – 14.3)	0.37 (0.13 – 1.03)
Free time contact	2.00 (0.60 – 6.67)	4.16 (0.62 – 25.0)	1.06 (0.25 – 4.54)
Money contact	0.94 (0.28 – 3.13)	1.04 (0.32 – 3.51)	0.75 (0.23 – 2.44)
Adjusted Odds Ratio (95% CI) for Viral Suppression*,+			
	Any Gender	Female	Male
Any HIV+ contact	3.24 (1.08 – 5.45)	2.81 (0.80 – 9.81)	2.98 (0.79 – 11.2)
Health contact	3.25 (0.90 – 11.7)	3.50 (1.10 – 12.7)	2.10 (0.53 – 8.28)
Emotional support contact	1.11 (0.36 – 3.36)	1.11 (0.36 – 3.36)	0.63 (0.14 – 2.82)
Free Time contact	3.21 (0.73 – 14.0)	3.31 (0.50 – 22.0)	3.09 (0.57 – 16.7)
Money contact	8.76 (0.92 – 23.2)	8.76 (0.92 – 83.2)	
Food contact	3.81 (0.41 – 35.3)	3.81 (0.41 – 35.3)	


* Reference group is young women without HIV+ social contacts

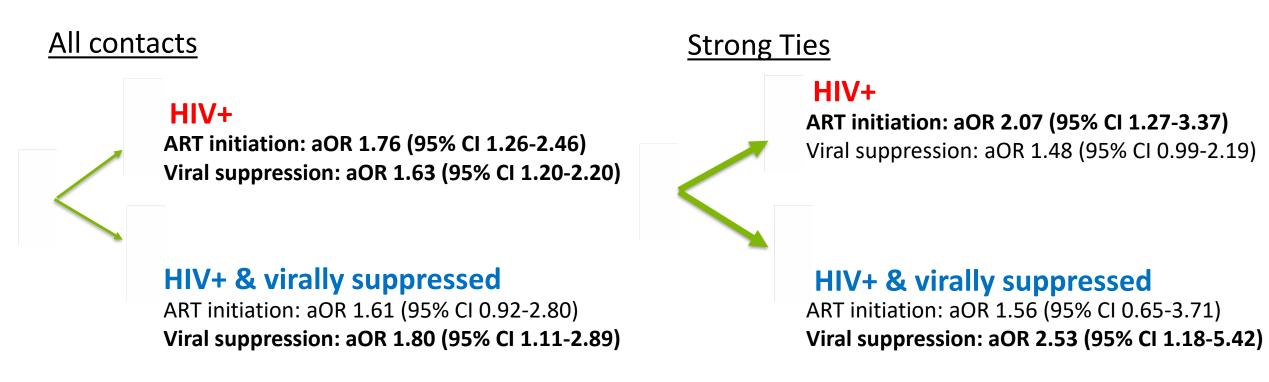
⁺ Adjusted for previous HIV care, pre-ART CD4 count, and multiple testing

Brown et al, CROI 2017

Does tie strength matter?

- Tie strength is associated with influence¹:
 - Weak ties are important for information spread and rumors
 - Strong ties are important for behavior change

Hypothesis: Strong ties will be more strongly associated with HIV clinical outcomes


Among youth (15 – 24 years), does having ≥1 network contact who was HIV+ and virally suppressed (HIV RNA <400 copies/ml) at baseline predict ART initiation and viral suppression after 3 years of follow-up?

Is the association greater for strong ties (network contacts named in more than one domain)?

Youth in the SEARCH Trial with HIV care-experienced contacts in their local social network have higher engagement in care and viral suppression

857 HIV+ youth who were ART-naïve at baseline and still alive and in the community after 3 yrs:

- 32% named ≥1 HIV+ contact (15% had HIV+ strong ties)
- **9%** named ≥1 **virally suppressed contact** (4% had virally suppressed strong ties)

Adjusted for sex, region, new diagnosis, study arm

Summary

- Social Network Analysis is a novel and powerful method to understand individual outcomes in the context of social structures and their relationships with others
- Preliminary data suggest *who* HIV-infected youth in East Africa are connected to impacts their clinical outcomes (ART initiation, retention in care, and viral suppression)
 - HIV-infected household members
 - HIV-infected contacts in local social network
 - Virally-suppressed HIV-infected contacts

Conclusions and Next Steps

 HIV-infected youth may benefit from interventions that strengthen existing connections or make new connections between HIV care-experienced peers

- Next questions:
 - What are the characteristics of these care-experienced alters?
 - How does network structure mediate the influence of alters?

Acknowledgements

Division of HIV, ID, & Global Medicine Diane Havlir

UC Berkeley Maya Petersen

University of Washington Biostatistics Yiqun Chen **Duke Network Analysis Center**

James Moody

KEMRI Elizabeth Bukusi

Makere University

Moses Kamya